Postbaccalaureate Fellowship Opportunities

Description

Postbaccalaureate Fellow placements:
Students who are selected for interviews, based on their application, will be contacted to rank their interest in the host lab placements. At this time, they will be able to express locational restrictions.

<table>
<thead>
<tr>
<th>Pi</th>
<th>Affiliation</th>
<th>City</th>
<th>State</th>
<th>Associated SENS strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evan Snyder</td>
<td>Sanford Burnham Prebys (SBP)</td>
<td>La Jolla</td>
<td>California</td>
<td>RepentSSENS</td>
</tr>
<tr>
<td></td>
<td>Medical Discovery Institute</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* designates a PI who is also accepting Master’s students through Dominican University of California

Evan Snyder (Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA): We believe the study of stem cell biology will provide insights into many areas: developmental biology, homeostasis in the normal adult, and recovery from injury. Indeed, past and current research has already produced data in these areas that would have been difficult or impossible via any other vehicle. We have engaged in a multidisciplinary approach, simultaneously exploring the basic biology of stem cells, their role throughout the lifetime of an individual, as well as their therapeutic potential. We have taken two disparate organ systems, the brain and the lung, and are discovering parallels in their development, response to infections and molecular functions. Taken together, these bodies of knowledge will glean the greatest benefit for scientists and, most importantly, for patients. All of our research to date has been performed in human stem cells and verified in animal models with the ultimate goal of bringing them to clinical trials as soon as possible.

Possible research project options include:
1. Model lung development using human induced pluripotent stem cells (hiPSCs).
2. Determine the effects of tobacco related products on lung stem cells and aging.
3. Explore how SARS-CoV-2 impacts lung and brain cells.

Category

1. Uncategorized

Date Created
August 2023

Author
jpedersen